Automorphism Groups of Planar Graphs

نویسندگان

  • Pavel Klavík
  • Roman Nedela
چکیده

By Frucht’s Theorem, every abstract finite group is isomorphic to the automorphism group of some graph. In 1975, Babai characterized which of these abstract groups can be realized as automorphism groups of planar graphs. In this paper, we give a more detailed description of these groups in two steps. First, we describe stabilizers of vertices in connected planar graphs as the class of groups closed under the direct product and semidirect products with symmetric, dihedral and cyclic groups. Second, the automorphism group of a connected planar graph is obtained as semidirect product of a direct product of these stabilizers with a spherical group. Our approach connects automorphism groups with geometry of planar graphs and it is based on a reduction to 3connected components, described by Fiala et al. [ICALP 2014].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automorphism groups , isomorphism , reconstruction ( Chapter 27 of the Handbook of Combinatorics )

1 Definitions, examples 5 1.1 Measures of symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Reconstruction from line graphs . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Automorphism groups: reduction to 3-connected graphs . . . . . . . . . . . 10 1.4 Automorphism groups of planar graphs . . . . . . . . . . . . . . . . . . . . 11 1.5 Matrix representation. Eigenva...

متن کامل

AUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS

An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...

متن کامل

The Number of Labeled 2-Connected Planar Graphs

We derive the asymptotic expression for the number of labeled 2-connected planar graphs with respect to vertices and edges. We also show that almost all such graphs with n vertices contain many copies of any fixed planar graph, and this implies that almost all such graphs have large automorphism groups. ∗Research supported by the Australian Research Council and NSERC †Research supported by the ...

متن کامل

The automorphism group of the reduced complete-empty $X-$join of graphs

Suppose $X$ is a simple graph. The $X-$join $Gamma$ of a set ofcomplete or empty graphs ${X_x }_{x in V(X)}$ is a simple graph with the following vertex and edge sets:begin{eqnarray*}V(Gamma) &=& {(x,y) | x in V(X) & y inV(X_x) },\ E(Gamma) &=& {(x,y)(x^prime,y^prime) | xx^prime in E(X) or else x = x^prime & yy^prime in E(X_x)}.end{eqnarray*}The $X-$join graph $Gamma$ is said to be re...

متن کامل

Enumeration of Maximal Planar Graphs with minimum degree Five

In this paper, we give a process to enumerate all maximal planar graphs with minimum degree ve, with a xed number of vertices. These graphs are called MPG5 [6]. We have used the algorithm [3] to generate these graphs. For the MPG5 enumeration we have used the general method due to Brenda McKay in [5]; i.e. by computing the orbits set of automorphism group and canonical forms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1506.06488  شماره 

صفحات  -

تاریخ انتشار 2015